10,203 research outputs found

    Crassulacean acid metabolism in the Gesneriaceae

    Get PDF
    The occurrence of the Crassulacean acid metabolism (CAM) was studied in four epiphytic species of the Gesneriaceae: two neotropical species, Codonanthe crassifolia and Columnea linearis, and two paleotropical species, Aoschynanthus pulcher and Saintpaulia ionantha. Gas exchange parameters, enzymology, and leaf anatomy, including mesophyll succulence and rel­ ative percent of the mesophyll volume occupied by airspace, were studied for each species. Codonanthe crassifolia was the only species to show nocturnal CO2 uptake and a diurnal organic acid fluctuation. According to these results, Codonanthe crassifolia shows CAM-cycling under well-watered conditions and when subjected to drought, it switches to CAM-idling. Other characteristics, such as leaf anatomy, mesophyll succulence, and PEP carboxylase and NADP malic enzyme activity, indicate attributes of the CAM pathway. All other species tested showed C3 photosynthesis. The most C3-like species is Columnea linearis, according to the criteria tested in this investigation. The other two species show mesophyll succulence and relative percent of the leaf volume occupied by airspace within the CAM range, but no other characters of the CAM pathway. The leaf structure of certain genera of the Gesneriaceae and of the genus Peperomia in the Piperaceae are similar, both having an upper succulent, multiple epidermis, a medium palisade of one or a few cell layers, and a lower, succulent spongy parenchyma not too unlike CAM photosynthetic tissue. We report ecophysiological similarities between these two distantly related families. Thus, the occurrence of CAM-cycling may be more common among epiphytic species than is currently known

    Pre-clearing vegetation of the coastal lowlands of the Wet Tropics Bioregion, North Queensland

    Get PDF
    A pre-clearing vegetation map and digital coverage at approximately 1:50 000 scale for the coastal lowlands (up to about 200 m elevation) of the Wet Tropics Bioregion, North Queensland is presented. The study area covers about 508 000 ha from Cooktown, 420 km south almost to Townsville (latitude 15° 30’–18° 20’ longitude 144° 50’–146° 40’). Data sources included historical aerial photography, early surveyors’ plans, explorers’ journals, previous vegetation maps, and maps of soils and geology. The pre-clearing mapping was built around the remnant vegetation mapping of Stanton & Stanton (2005), and the vegetation classification of this latter work was adopted. Vegetation units were further classified into regional ecosystems compatible with the standard State-wide system used by Queensland government. The digital coverage is part of the current Queensland Herbarium regional ecosystem coverage (Queensland Herbarium and Wet Tropics Management Authority 2005). Coloured maps (1:100 000 scale) of the pre-clearing vegetation of the Herbert, Tully, Innisfail and Macalister/Daintree subregions are on an accompanying CD-ROM. An evaluation of vegetation loss through clearing on the coastal lowlands of the Wet Tropics revealed several nearextinct vegetation communities and regional ecosystems, and many others that are drastically reduced in area. Even ecosystems occurring on poorly drained lands have suffered a surprisingly high level of loss due to the effectiveness of drainage operations. Grassland ecosystems were found to be widespread on the Herbert and Tully floodplains, but are now close to extinction. The lowlands vegetation of the Wet Tropics that remains today continues to be fragmented and degraded despite the introduction of State-wide broad-scale tree-clearing laws in 1999, and the cessation of broadscale tree-clearing in December 2006

    Zmiany w komórkach mezofilu liści roślin Lycopersicon esculentum Mill. spowodowane zasoleniem

    Get PDF
    Five-week-old tomato plants (Lycopersicon esculentum) cv. Perkoz grown in pots containing garden soil in a growth chamber were submitted to 50 or 150 mM NaCl for 1 h, 2 and 5 days. Tomato leaf anatomy generally did not change after short time salinity, except 5-day-treatment with 150 mM NaCl, where changed cell shape (shrunk and deformed) simultaneously with increased volume of intercellular spaces (IS) were observed. Although leaf hydration (H) depleted only 1 h after 150 mM NaCl treatment both salt concentrations generated two coexisting populations of saltaffected mesophyll cells: (i) slightly-affected (Sl-A) which showed incipient plasmolysis or slightly changed shapes, and (ii) severely-affected (Sv-A) which showed severe plasmolysis; serious deformation of cell shape or disorganization including cell degeneration. In Sl-A cells salinity changed location and shape of chloroplasts which were: more rounded, with oversized starch grains (SG) (2d) or more flat (5d). Salt-mediated changes were becoming more distinguished and pronounced with length of 150 mM NaCl treatment. The amount of salt-affected cells was changing during the experiment and depended on the salt concentration. In 50 mM-treated plants salt-affected cells appeared 1 h after treatment (~40%) and raised up to 78% on 2nd day, however the population of Sl-A cells dominated. In 150 mM NaCl-treated plants the percentage of affected cells raised during the experiment from 75% to 99%. Firstly Sl-A cells dominated, but on the 5th day the majority was Sv-A. Salt-affected cells were distributed quite evenly in palisade or spongy mesophyll, except 2 d after treatment with 50 mM NaCl, when their number was higher in the palisade mesophyll. Sv-A cells in the spongy mesophyll were located mostly near the bundle while in the palisade mesophyll more irregularly. Different susceptibility of cells to salt stress might be the consequence of an unequal distribution of osmotic stress and subsequent ionic stress or physiological state of cells

    Photographic Remote Sensing of Sick Citrus Trees

    Get PDF
    Remote sensing with infrared color aerial photography (Kodak Ektachrome Infrared Aero 8443 film) for detecting citrus tree anomalies is described. Illustrations and discussions are given for detecting nutrient toxicity symptoms, for detecting foot rot and sooty mold fungal diseases, and for distinguishing among citrus species. Also, the influence of internal leaf structure on light reflectance, transmittance, and absorptance are considered; and physiological and environmental factors that affect citrus leaf light reflectance are reviewed briefly and illustrated

    Cold Period Plant-Water Relations Affecting Consumptive Use of Soil and Wastewater Reuse

    Get PDF

    Long-term effects of red- and blue-light emitting diodes on leaf anatomy and photosynthetic efficiency of three ornamental pot plants

    Get PDF
    Light quality critically affects plant development and growth. Development of light-emitting diodes (LEDs) enables the use of narrow band red and/or blue wavelengths as supplementary lighting in ornamental production. Yet, long periods under these wavelengths will affect leaf morphology and physiology. Leaf anatomy, stomatal traits, and stomatal conductance, leaf hydraulic conductance (K-leaf), and photosynthetic efficiency were investigated in three ornamental pot plants, namely Cordyline australis (monocot), Ficus benjamina (dicot, evergreen leaves), and Sinningia speciosa (dicot, deciduous leaves) after 8 weeks under LED light. Four light treatments were applied at 100 mu mol m(-2) s(-1) and a photoperiod of 16 h using 100% red (R), 100% blue (B), 75% red with 25% blue (RB), and full spectrum white light (W), respectively. B and RB resulted in a greater maximum quantum yield (F-v/F-m) and quantum efficiency (Phi(PSII)) in all species compared to R and W and this correlated with a lower biomass under R. B increased the stomata' conductance compared with R. This increase was linked to an increasing stomatal index and/or stomatal density but the stomata' aperture area was unaffected by the applied light quality. Leaf hydraulic conductance (K-leaf) was not significantly affected by the applied light qualities. Blue light increased the leaf thickness of F benjarnina, and a relative higher increase in palisade parenchyma was observed. Also in S. speciosa, increase in palisade parenchyma was found under B and RB, though total leaf thickness was not affected. Palisade parenchyma tissue thickness was correlated to the leaf photosynthetic quantum efficiency (Phi(PSII)). In conclusion, the role of blue light addition in the spectrum is essential for the normal anatomical leaf development which also impacts the photosynthetic efficiency in the three studied species
    • …
    corecore